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In this paper we investigate some algebraic and geometric properties of fuzzy 
partition spaces (convex hulls of hard or conventional partition spaces). In 
particular, we obtain their dimensions, and describe a number of algorithms for 
effecting convex decompositions. Two of these are easily programmable, and 
each affords a different insight about data structures suggested by the fuzzy 
partition decomposed. We also show how the sequence of partitions in any 
convex decomposition leads to a matrix for which the norm of the corresponding 
coefficient vector equals a scalar measure of partition fuzziness used with certain 
fuzzy clustering algorithms. 

I. INTRODUCTION AND CONCLUSIONS 

The clustering algorithms of Ruspini [I], Woodbury [2], Bezdek [3], and 
Dunn [4] all yield fuzzy partitions as clustering solutions for partitioning finite 
data sets. It was shown in [3] that fuzzy partition spaces are minimal convex 
supersets, that is, convex hulls, of hard (or conventional) partition spaces. Our 
goal in this paper is to explore some of the algebraic and geometric consequences 
of this convexity property. 

Partition spaces are defined in Section II; some previous results and several new 
observations are given. Section III contains our proof that the space of fuzzy 
c-partitions on n data points has dimension n(c - 1). In IV an algorithm using a 
minimax strategy is defined and illustrated numerically. We show that minimax 
decompositions have lexicographically optimal coefficients. A second decomposi- 
tion is given in V that interprets the construction of fuzzy partitions from a 
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sequence of hard ones as a sequence of transitions or reclassifications from a 
state of “maximum membership.” In VI the partition coefficient used in [5] 
for evaluation of cluster validity is related to convex decompositions: we prove 
that this measure of fuzziness is proportional to the number of reclassifications 
made in the terms of every decomposition of the fuzzy partition in question. 
This result lends additional support to the clustering strategy proposed in [3] 
and [5]. 

II. PARTITION SPACES 

Let S == [x1 , x2 ,..., x,1 C Iws be a given finite data set. We fix the integer c, 
2< c < n, and denote by V,, the usual vector space of real (c :< n) matrices. 
Suppose P :-= (Y, , I’, ,..., Y,) to be a conventional hard c-partition of -x7. Thus 
for each i, 1 < i < c we have Y, C X; for each i # j the intersection 1, n 1; 
is empty; and the union of the Yi’s is all of X, ur=, Yi = X. We say that P is 
non-degenerate in case none of the Yi’s is empty, and is degenerate otherwise. 
Partitions of X can be conveniently characterized by matrices in v?,, as follows: 
let u,~ be the ik-th element of U E rc, , and define 

U E Vcs: uik E (0, l> V i, k; i uik = 1 V k; f u,h >otlz 
E=l P=l 

.( . 

For L’ in PC we interpret uik as the value of a characteristic function u,: S -+ 
(0, I>; u,~ specifies the membership of xy in a partitioning subset 1, of S: 

u zk - - t&k) = 1; Xk E E’i 

= 0; otherwise. 
(2) 

The c-tuple (ur , us ,..., u,) is the function-theoretic equivalent of (k; , 1; ,..., 
Y,), so each U E PC is uniquely identifiable with a hard c-partition of ,7i‘ via (2). 
Accordingly, we may call PC hard c-partition space associated with X, and because 
degeneracy is manifested by zero rows in U, the superset 

P,, = 1 U E Vcn: uik E (0, l} V i, R; -f: utk = lVk;i -I u,k > ovt’ 
! 

(3) 
1=1 A=1 

is degenerate hard c-partition space for X. 
PC and PC0 are not “spaces” in any ordinary sense; rather, they are extremely 

large finite sets in the positive or non-negative orthant of V,, . Since / PC,, / < 00, 
exhaustive search for “optimal” partitions of X is theoretically possible, but 
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infeasible in practice because of their cardinalities: e.g., 1 P, 1 w 101s if c = 10, 
n = 25. Thus finiteness is an impediment to tractable algorithms as well as 
analytic techniques when partitioning of X is desired. 

An even stronger objection to P, lies with the physical interpretation of data 
substructure it requires. Every xlc in X belongs entirely to one and only one of 
the hard partitioning subsets ui (since ui and Yi are equivalent, we may call 
ui a set). All members of ui are fully related to each other, and at the same time 
totally unrelated to all other members of the data because the boundaries of the 
partitioning subsets are hard. This is a particulary harsh model for many 
physical processes, since data representative of most situations originates from 
mixed populations. It seems more realistic to allow individuals to share member- 
ships in several partitioning subclasses (for example, this is the situation we 
anticipate for data representing hybrids in mixtures of biological species at the 
same strata). 

A natural way to ameliorate these objections was suggested by Zadeh in [6], 
who proposed that non-statistical uncertainties of the type described above might 
be more accurately represented by allowing memberships in fuzzy sets, charac- 
terized by membership functions valued in [0, 11. Motivated by these considera- 
tions, and using (I) as our guide, we define 

Pfr = i 
1 
U E VGn: uik E [0, l] V i, k; f u~L = 1 V k; 2 uik > 0 V i 

I 
(4 

i=l k=l 

as fuzzy, non-degenerate c-partition space for X. Here uilc is again the grade of 
membership of xk in the fuzzy subset ui: X -+ [0, 11. The condition c,“=, uik = 1 
for each K insures that each xK has unit membership (in X); these memberships 
may be distributed among the c fuzzy subsets {ui} arbitrarily as long as their sum 
is unity. Corresponding to PC0 in the hard case is degenerate fuzzy c-partition 
space Pfc,, obtained from (4) by relaxing the last condition exactly as was done 
in (3); Preo is not used in the sequel. 

A substantial amount of information concerning the imbeddings P, C PGO C 
Pfc C PjcO is available elsewhere [3]. The main fact established there we intend 
to exploit below is that P,, is the convex hull of P,, , P,, = conv(P,). We observe 
that the convex hull of P, is a proper subset of conv(P,,), by noting that, for 
example, with any X in [0, l] the matrix 

I 
x 

u= l--h 
h h 

l--h l--x I 

lies in conv(P,,), but is not in conv(PJ. In other words, this U has no convex 
decomposition with all non-degenerate terms. The additional property U in 
Pfc needs to distinguish it as a member of conv(P,) is not yet known: our interest 
lies with Pfc due to the physical considerations outlined above. 
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III. THE DIMENSION OF FUZZY PARTITION SPACE 

In this section we prove that the dimension of P,, is n(c - l), dim(P,,) -: 
n(c - 1). Prc is convex, so takes its dimension from the vector subspace which 
translates the affine hull of Prc to the origin of V,,; dim(P,,) = dim(M), where 
uJf(Pfc) = U” + M, U” E V,, , and M a vector subspace in V,, . Before 
stating and proving this theorem, we sketch the idea of the proof. Given CT E Pf,, ~ 
one can choose any positive path v, = (*r , ** ,..., *,J with *, > 0 for every i 

through the columns of U. Such a path is illustrated pictorially in (6): 

Ull 1112 .-**** 6=-q * * -. Uln 

%l (Ua=*II . . . . . . . . . . . . . . u,, 

&p--q . . . . . 1 . . . . . . . . . . . . . . . . U,n 

UC1 

u,q . . . . . . . . . . . . *..*. i u,, = sn 1 

Call cj the smallest element of Vj; define a matrix ZJj E PC0 to have l’s at every 
address of the entries of vj , and O’s elsewhere. Define a residual matrix R, == 
U - cjUj . Apply this iteratively to Rj , beginning at R. e ZJ; we shall first 
show that Rj -+ 0 in n(c - 1) + 1 or less steps; and to complete the proof, that 
there is a matrix in Pfc which cannot be decomposed with less than n(c - 1) + 1 
terms. This will prove 

THEOREM 1. For Prc as defmed in (5), we have 

dim(P,,) = n(c - 1). (7) 

Proof. Let U E Pfc . For 1 < k < n choose il; so that the entries u+~ > 0, 
and set Z’ = R’, ,1r = {ilc: 1 < k < n}. This is always possible because columns 
of 0’ must sum to 1, so every column has at least one non-zero entry. Define 
the n-vector v1 = (uil,r , u,~,~ ,..., u~,,.~ ) and set c1 = min,,{ui,,k}. If cr = 1, I; is , 
already hard and we are done. Otherwise, define the matrix U, E PC0 via 

(“l)ir,k = I; G E 4 

= 0; otherwise, (8) 

so that U, has l’s wherever vr passes through U, and O’s elsewhere. Next, define 
the residual matrix 

R,=U-cc,U,=R,-cc,U,. (9) 
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Note that every column of R, sums to 1 - c, > 0; moreover, R, contains at 
least one zero, viz., at the address where c, occured in U (it may have more 
than one zero if mir+{ui,,,} is not unique), 

Proceeding iteratively, we apply the steps above to RI: find a non-zero path 
v, through its columns, factor out the smallest element -cZ - in the path; define 
U, E P,, using these path addresses, and set R, = RI - caU, . Either R, is the 
zero matrix and we are done, or (i) column sums of R, are equal to 1 - (cr + ca) 
> 0, and (ii) R, has at least two zeores. 

Continuing inductively, we have at the j-th step the residual Rj = U - 
CL dJk 9 and if Rj is not the zero matrix, then (i) column sums of Ri are 
positive, 2:-l (r& = 1 - & ck , and (ii) Rj has at least j zeroes. Now let 
m = n(c - 1). Either this process terminates at some j < m, or after m iterations 
the residual Rm has at least m zeroes. If R, is not the zero matrix, its positive 
column sums are 1 - Cr=“=, c, > 0, so every column has a non-zero entry. But 
m = n(c - l), so each column of R, has exactly one entry which must equal 
1 - c& ck . Define c,,, = 1 - cy=l cK , and U,,,, E PC, using the addresses 
of the entries in Rm in the usual way. Then R,+l = U - CrL: ckUk = the zero 
matrix. Since CT:- c, = 1 with all of the cK’s in (0, 1) and all of the Uk’s E PC, , 
the convex decomposition of U is complete. 

We have shown that every U E PfC admits at least one convex decomposition 
with n(c - 1) + 1 terms. Thus by Caratheodory’s theorem for convex sets (cf. 
Roberts and Varberg [?‘I), we conclude that dim(P& < n(c - 1). 

To complete the proof we must show that equality prevails. Towards this end, 
let k E DB and define U = [uJ by 

l<i<c- 1 and l<j<n 

(10) 
C-l 

= 1 - c u,j; 
S=l 

i=c and 1 <j<n, 

where again m = a(c - 1). For k E (0, 1) this matrix belongs to PfC . Suppose 
this U can be decomposed in less than or equal to m terms, say for convenience 
that U = cj”=r C$: c+jlJ, , where Vi* E PC, , cij E [0, l] V i, j, and cj”=l CFZ: cii 
= 1. To write lcll = k as a partial sum of the convex coefficients, it is necessary 
that at least one of the Q’S is contained in the closed interval [(l/m) k, k]. We can 
assume without loss that err is this coefficient. Similarly, there is for era at least 
one of the ci3’s, say cl2 , so that cl2 E [(l/m) (k/2m), (k/2m)], and cl1 # cl2 , 
because 

[(~)(K),k]n[(-ln;)(~),(~)] = P, fork>O. 
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Continuing inductively, it is clear that each utj in (10) for 1 < i < c - 1 and 
1 < j < n requires a distinct coefficient czj which satisfies 

c,, f Cst unless i = s and j = t. (1 lb) 

In view of (1 la), we can bound above the sum of these m c,~‘s by summing the 
upper endpoints of the intervals at (11 a): 

If we choose K so that 

k< m=n(c- I), (12) 

then Cj”=, 2::: ctj < 1, and we need at least one more coefficient to effect a 
convex decomposition of U. That is, we must use m + 1 terms for the matrix at 
(10). Given c and n, it is clear from (12) that k can always be chosen so that U in 
(10) belongs to Pf, , so the proof is complete. Q.E.D. 

IV. MINIMAX DECOMPOSITION 

Because the residual at each step in the algorithm used for the proof of 
Theorem 1 has at least one entry forced to zero, we call it aforcing (or F) algcnithm. 
Not all convex decompositions are achieved with forcing algorithms, and we 
shall see in the next section that every U E Prc can be decomposed without 
using an F algorithm. Many different F-decompositions of a given U will 
generally be possible, since the only constraint on the path v, in the above proof 
was positivity. Despite this problem of non-uniqueness, there is among the 
F-decompositions of U one which deserves special attention. If at each step the 
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path vi chosen through Rj is one of maximum residual memberships, the q 
factored from v, will be the minimum maximum residual membership, giving rise 
to the Minimax (or MM) Decomposition. 

Let UEP,,. Following the algorithm given in the proof of Theorem 1, we 
modify the choice of path v, as follows: at step j + 1, choose vj+r through Rj 
by letting (& , k) be the index at which maxl~i&(rj)ik} is achieved for 1 < K < n. 
If more than one index occurs at any k, choose any one of these. Set vj+r = 
(*il.1 , *i,.a ,..., *+J, and c3+l = minl<~~n{(rj)ik,k}. Then define Uj+r E PC, to 
have l’s at the addresses from which the entries of vi+r were chosen, and O’s 
elsewhere. Finally, put Rj+, = Rj - c,+rUi+r , and iterate until R, -+ 8, the 
zero matrix. 

To illustrate F-decompositions, we apply first an arbitrary F-algorithm, and 
then the MM-algorithm to the matrix 

u .90 
.80 .30 40 .05 

= [ .lo .20 .70 .60 .95 1 . (13) 

(i) Arbitra y F-decomposition 

Since uik is positive for every i and k, we can extract at once any c, = tii,+ . 
Arbitrarily choosing path vi = (* 21 t *22 7 *23 9 *24 f * 15 ) and taking for cr entry 
u r5 = .05 leads to 

[ 
00001 

clu, = .05 1 1 1 l 0 ; I 

and 

R1 = ’ .90 
.80 .30 .40 0 

- ‘lul = .05 .15 .65 .55 .95 I ’ 

Choosing c, = (yl)21 = .05 with v2 = (*21 , *22 , *23 , *24 , *25) now yields 

[ 
0 0 0 0 0 

c&J,=.05 1 l 1 1 1; I 

and 

R .90 .80 .30 
40 0 

2 = [ 0 .lO .60 .50 .90 I * 

Continuing in this fashion, one may generate various F-decompositions of U. For 
example, the paths and coefficients 

c3 = .lO: v3 = (*ll 9 *22 3 *23 3 *24 f *25) 
c, = .30: v4 = (*11, *12, *13 9 *14 t * ) 25 
c5 = .lO: v5 = (Cl1 3 *12 > *%3 9 *14, *25) 
C6 = 40: v6 = (*ll, *12 F *23 7 *24, *25) 
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result in the particular decomposition 

[ .90 .10 20 .20 30 .70 A0 .60 .05 .95 1 

In (14) only Cm2 is degenerate: the proportion of degenerate terms appearing 
in F-decompositions tends to increase with c. Moreover, there is little practical 
value for a decomposition like (14), since it furnishes no explanation or inter- 
pretation for structure in the fuzzy partition it decomposes. 

(ii) MM-decomposition 

Beginning again with U in (13), we find the initial minimax path 
"1 = (Jll, -12 * *23, *24, *a5) through U: the address yielding the MM mem- 
bership is (2, 4) so cr = Us = .60, thus 

c,Z,: := .60 [ 11000 1 o o 1 1 1 ; 

and 

R, R, clUl U cl& .30 .20 .30 A.0 .05 = - = - = .lO .20 .lO 0 .35 1 * 

Inspection of I?, reveals that the residual MM membership is .20, that is, cj 
will be .20. There are, however, two MM paths which are available for this 
choice; 

and 

"2 = (*11 7 *12 > *13 7 *14 * *2&r 

";. = (*11 7 *22, *13, *14 > *?A. 

The choice of path is arbitrary, leading to either one of 

c2z7:! 1 1 1 1 0 ~= .20 [ 00001 1 Or c21J; 0 1 1 = .20 1 1 o 1 o o 0 1 l . 

These choices would yield for residuals the matrices 

R2 t::: .z”o 110 10 .20 .05 I Ri= E .lO .20 .lO .20 .0.5 = 0 .15 or .lO 0 .lO 0 15 1 * 



498 BEZDEK AND HARRIS 

In either case, note that ca will be .10 and at step 3 there will be four MM paths 
available, two for each choice for R, . All of these choices will leave residuals 
with minimax membership in Rz equal to c, = .05. Finally, every branch at 
the fifth step would require the choice ca = .05. We exhibit one MM decomposi- 
tion of U: 

[ .90 .lO .80 .20 .30 .70 .40 .60 .05 .95 I 

zzz .60 [; ; ; ‘: ‘: ] + .20[ 

+ .05 [:, ; :, :, :, 
1 0 1 1 0 

]+.05[ 1. 0 1 0 0 1 (15) 

Although the MM-decomposition (15) is non-unique, there are several 
important aspects of it that are invariant. In what follows it is convenient to 
introduce the following terminology: 

DEFINITION 1. Let x:=1 c~U, be any convex decomposition of U in PfC . 
We call p the length of the decomposition, and the hard partition U, E PC0 with 
cj = maxrsksP{c,) is called its dominant term. Since the sequence {c~} of coefi- 
cients generated by MM-algorithms is monotone decreasing by their definition, 
i.e., 1 3 cr > ca ... > cP > 0, U, is always the dominant term in MM decom- 
position. In particular, this Vi is the hard partition of X “closest” to U in the 
sense of maximum membership (cf. [S]), and deserves to be isolated by a special 
notation, say U,,, , because it is one whose structure can be readily interpreted 
as the best (in the sense of maximum membership) hard approximation to 
UEPf,. 

Theorem 1 shows that the MM-algorithm terminates in at most n(c - 1) + 1 
steps. In general, however, it may stop sooner, as was the case in our example 
above. Roughly speaking, this happens because we extract at each step the 
largest possible coefficient, thus yielding decompositions of minimal length. 
While MM decompositions are often non-unique, we may prove that both 
their lengths and coefficient sequences are: 

THEOREM 2. If U E PfC has two distinct MM-decompositions, say U = 
CiC1 ck U, = Zf=, c; UL , then 

P = 9; W4 

and 
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Proof. Let M and N belong to V,, , and set 1, = (1, 2,..., c>. We shall say 
that M . cp . N iff for 1 <i < n there is a permutation nj: IC -+ 1, so that 
rntj = nn,tL),, , 1 < i < c. In other words, M and N can be obtained from each 
other by independently permuting the entries in corresponding columns. 

Now let U E Pfe and suppose at the K-th step in MM-decomposition of 1. 
two distinct MM paths v,+ and v; through R,-, are available, yielding hard 
partitions CTk + Ui . The values of vB and v; are equal: it is their address 
origins that differ at least once, leaving for residuals the matrices R, + R; . 
Since the columns of R, and R; are identical up to a permutation of each pair of 
columns at addresses where V~ and v;i differ, R, cp R; . 

Applying the MM-algorithm to R, and Ri , suppose ckil and ci+i to be the 
coefficients extracted, respectively. R2, . cp RL implies that all column maxi- 
mums in R,, and Rk are equal, so ck+r = cL+r . Repetition of the argument above 
now yields for the new residuals R,,, . cp . Rk,, . In view of this, identical 
coefficients must be extracted at every step. From which there follows (16a) 
and (I 6b). Q.E.D. 

Now suppose that x:“,=r dkWk is any convex decomposition of 1; E Pfc, and 
that [cl , cz ,..., ce} are the coefficients for a MM-decomposition. Assuming 
without loss that the {dk} are monotone decreasing, 1 > dl > d, ... > d, :.b 0, 
we note that cr > d, , because cr is the largest possible coefficient that can be 
factored from ti. If cr = d, we may take R ‘r = L”, in the MM-decomposition. 
i.e., 15; -- I:, =I U,,,,m,. Continuing in this fashion, we can construct from 
the 11,‘s a MM sequence as long as the d,‘s continue to equal the c~;‘s. 
Either this process terminates with p = 4 and d,; = ck Vk; or at some j, d, e:: c, . 
This proves 

THEOREM 3. Let U E P,, . The coe$%ient vector c,,,., = (cl , c2 ,..., cp) for all 
MM-decompositions of U is lexicographically larger than the coe@ient vector 
d = (d, , d2 ,..., d,) for any other convex decomposition of CT. 

Since the sum of convex coefficients in every convex decomposition of La’ is one, 
it is plausible to presume that the size of each coefficient is a measure of the 
relative efficacy of its associated hard partition of S as a factor in the construction 
of fuzzy partition U. Theorem 3 shows that U,,;,, , the first term of every M&I- 
decomposition of U, is always the “strongest” possible dominant term, and the 
remaining terms in MM-decompositions form the optimal sequence of factor 
partitions in the sense of coefficient magnitudes. Empirical evidence as well as 
one’s intuition suggest that a related property of MM-decomposition is also true: 

Conjecture. Let U E P,, . If zlzl ckUk is any Mill-decomposition of G, and 
CE=, dkWk is any other decomposition of U, then p <: q. 

Indeed, p = 2 implies 4 3 2, for otherwise q = 1 implies U E PC0 so p = 1. 
At p = 3 the same argument shows that q # 1, so the conjecture is true unless 
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q = 2. If q = 2, then cr + c2 + ca = dr + dz = 1. Theorem 3 insures us that cr > dl 
and cr > d, . If cr were equal to either dl or d, , we could choose for the cor- 
responding Wj the matrix U, , leaving equal residuals U - cr U, = U - dj W, . 
Then the remaining dk must equal c, , for otherwise maximality of ca contradicts 
ca 3 dk , and dk 6 ca implies that 1 = dj + dk , c, + ca = 1. In either case, this 
leaves cs = 0 sop # 3. On the other hand, if cr > dl and cr > d, , then because 
cr = Uij for some i and j, it is necessary that cr = dl + d, = 1, so c, = c, = 0, 
and again p # 3, thus, p = 3 implies q > 3. These remarks establish the con- 
jecture for p < 3, and strongly support our guess that MM-decomposition is 
always minimal in length. 

V. RECLASSIFICATION DECOMPOSITION 

F-decompositions force at least one residual membership to zero at each step 
in their application: we interpret this as forcing the individual concerned out of 
its membership in the class it leaves. In MM-decomposition all 71 subjects begin 
in their maximum membership classes (in U, = U,,,), and when ca is extracted 
as many individuals as possible are allowed to shift classes in the hard partition 
U, . An algorithm for decomposition which is based on membership thresholding 
and proceeds quite differently from the MM-algorithm is the 

Reclassification (or R) Decomposition 

Let UEPf,. From U we first construct a ranking matrix p( t:) E VCII as 
follows: pEJ is the integer in I, = {I, 2,..., c> which gives the rank of II,, in column 
j, 1 ,< j < n, after ordering the elements of each column of U in descending 
order. 

A second matrix u(U) E V,, is then derived from p(U) by taking cumulative 
sums of entries in U: wherever pij = I, define oij = uZj; where pu = 2, define 

U23 = Ilal,j + uij v where P~,,~ = 1, * and so on. In other words, the entries in 
columns of u(U) are cumulative sums of the memberships of each xk in the c 
fuzzy sets exhibited in U: the values in column j ascend from the largest member- 
ships, and so on up to 1, the addresses of this ordered sequence being found at 

we have 

I, 2,..., c in the corresponding column of p( U). For example, with 

.I5 

.80 1 , 

.05 
(18) 

u(U) = 
.70 20 1 .95 
.90 .50 .97 .80 
I 1 20 1 

1 
J’ 
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Next, we array the n(c - 1) smallest positive entries of o(U) in increasing 
order, label them a, to a, , m = n(c - 1), define a, = 0; a,,, = I, and calculate 
their successive differences: 

0 = a, < a, d u2 , .‘. <a, <u,,,+1= 1 (19) 

CHl = Uj3.l - a,; 0 <j .< m. (20) 

The cj’s all lie in [0, 11, and by their definition sum to 1, CyLr’,’ Cj = a,,,+, - a,, 
= 1: these are the convex coefficients of the R-decomposition of Cr. Since a, is 
the smallest positive entry in u(U), cr = a, - a, is the minimum maximum 
membership in U. That is, the$rst coejicient extracted by both the R and Alill 
algorithms is always the same rme - the largest possible one. For the matrix at ( 18) 
we have from (U) 

a, = .oo 
a, = .50 
a2 = .70 
u3 = .80 
a4 = .90 
us = .95 
UR = .97 
a7 = 1 

> Cl = 

> c2 = 

> c3 = 

> cq = 

> cg = 

> cfi = 

> cy = 

.50 

.20 

.I0 

.lO 

.05 

.02 

.03. 

(21) 

Note that even though cr is always the largest coefficient extracted, this 
sequence is not necessarily monotone decreasing; it will be ztnique and of length 
n(c - 1) + 1 whenever the ordering in (19) is strict. To complete the decom- 
position, we define hard partitions U, E PC, corresponding to the ck’s as follows: 
lj; = um is again the maximum membership matrix, and is the dominant term 
of both the R and MM decompositions; every xlr E X belongs initially to its class 
of maximum membership. Now think of rk = & c, as the threshold at step 
K in the R-algorithm; note that t, = a, for k > 1. At step k locate the address 
(or addresses) in u(U) where threshold uk occurs, and define U, equal to U,-, 
except: at each address where ak occurs in u(U), set (Uk),j = 0, and move the I’s 
that occupied these addresses to the place where their next lowest membership 
occurs, i.e., to the next highest integer address in the corresponding column of 
ranking matrix p(U). This transition rule amounts to reclassifying between L’, 
and Uj , i < j, all of those vectors which are thresholded from their upper to 
lower “halves” in u(U) as theshold t runs through (t, , t,]. This procedure is 
admittedly hard to described verbally, but should be clear from the example to 
follow: from (18) and (21) we would proceed by imagining threshold t to begin 
at 0; for 0 < t < .50 no reclassification is made, and we have 
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As soon as t becomes greater than .50, vector x, cannot tolerate membership 
in class 2 (one sees this by finding t = .50 at address (2,2) in o(U)); to find the 
destination of x2 , go to address (2, 2) in p(U), and find the address of the next 
highest integer, in this case, address (I, 2). Thus the transition from U, to U, 
at t = 0.5 is made by sending x2 from (2,2) in U, to (1,2) in U, , and we have 
for all t E (.50, .70] 

The sequence of transitions obtained in this fashion can be recorded in the 
matrix p(U) with arrows and indices indicating the stage at which the transition 
occured. Thus we have at first in p(U) 

P(U) = 

‘1 b 2, 3 2 

2; l1 21. Y 

-3 3 13 i 

Increasing t above .70 results in degrading the membership of vector x1 from 
class 1 to class 2, as seen by first inspecting u(U) to locate the threshold, and then 
b(U) to find the path of the transition. This second switch is shown above in 
p(U). Thus for all t E (.70, .80] we have 

0 1 0 0 
c3u3 = .lO I 1 0 0 1 I . 

0010 

Sequential reclassification via the R-algorithm is perhaps most easily under- 
stood when c = 2, for then each transition made merely moves one or more 
subjects from their maximum to minimum membership classes. To exemplify 
further, we rework the example of Section IV using the R-decomposition for 
matrix U shown at (13): 

.90 .80 .30 .40 
u = L.10 .20 .70 .60 

.05 1 .95 * (13) 

From U we find that 

.90 .80 I 1 1 
W)=[ 1 1 .70 .60 .95 ; 1 
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a, = .oo 
a = 

1' 
6. > cl = ~0 

a, = .70 
> c2 = .lO 

a, = .80 
> CQ = .lO 

a4 = .90 
> cq = .lO 

a5 = .95 
> c, = .05 

a6= 1 
> cg = .05. 

To begin, we have from above that 

cl& = .60 [ 11000 1 o o 1 1 1 , 

with residual 

R .30 .20 .30 .40 1 = [ .lO .20 .I0 0 .05 1 .35 . 

While in a general decomposition the next coefficient c1 = .lO could be 
extracted in many ways, the R-algorithm proceeds by degrading the vector 
whose membership in its maximum membership class is first exceeded upon 
crossing the threshold t = 0.60; in this case, from a(U) we find at address (2,4) 
that xq has the lowest tolerance, and must be reclassified (to address (1, 4) here) 
first: 

CJ, = .lO [ 1 1 0 1 o o 1 o 0 I 1 . 

Increasing t above .70 results in degrading the membership of xs 

cJJ3 = *lo [ 1 1 1 1 0 0 0 0 0 1 1 . 

At t > .80, ui2 = .80 3 reclassify xa: 

[ 
1 0 1 1 0 

c4u4 = .lO 0 1 0 0 1 1 . 

At t < .90, uii = 90 * reclassify x1: 

cJJ5 = .05 
[ 
00110 1 11001’ 

Finally, for t > .95, CQ~ = .95 requires us to reclassify xg last; this is due to its 
most distinctive memberships in U: 

409/67/2-I 7 
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The entire sequence of transitions for this example may be recorded in the 
matrix p(U) as follows: 

From this we see that the sequence of transitions always proceeds “uphill” 
through the ranked columns of p( U), from 1 + 2 .** + c. Note that U, and the 
final partition U, are algebraic complements; it is always the case that the first 
and last partitions in an R-decomposition sequence are the maximum and mini- 
mum membership partitions which are the closest and farthest hard partitons 
associated with U respectively. Since the {ak} were strictly ordered in this 
example, the R-decomposition was unique. 

Since the first (and dominant) term of every R and MM decomposition is 
U mm 9 one might conjecture that U,, is the dominant term in every convex 
decomposition of U E Pfc . To see that this is not the case, consider the matrix 

u 1 .54 .58 .73 = A6 .42 .27 55 1 44 ’ (23) 

with maximum membership matrix U,, = [i i i i]. We exhibit for this U 
the MM-decomposition, and a second convex decomposition which not only 
does not have U,,,, in it, but is in fact, entirely disjoint in the sense that no hard 
partition used in the MM-decomposition is used in the second one: 

MM-decomposition of (23) Another disjoint decomposition 

Although the term U,, which dominates both the MM and R decompositions 
does not always appear, it carries the coefficient c, which is maximum among all 
possible coefficients for a given U; accordingly, we presume that the equivalence 



CONVEX DECOMPOSITIONS 505 

relation induced on S x S by Z’,,,,, indicates the maximal strength of bonding 
at level cr which the vectors in S enjoy when partitioned by U. A forthcoming 
paper will deal at length with the relationships between fuzzy partitions and 
fuzzy similarity relations in S ;i S. 

Finally, we observe that sequential application of the R algorithm to its 
residuals at each step results in a M2V-decomposition of CT. 

1-J. CONVEX DECOMPOSITION AND THE PARTITION COEFFICIEKT 

For CT E I’,,, the Euclidean matrix norm and and inner product from which 
it is derived are 

‘1 CT Ii = (tr(UUt))l12 (244 

CC:, Z71J --1 tr(ULTt) = /I r/Is Pb) 

where tr( .), (.)’ respectively denote the trace and transpose operations. Following 
[5] we denote byF: V,, + R the function 

Since F(C) is inversely proportional to the overall content of pairwise fuzzy 
intersections in U, it has been called the partition coeficient of C. It measures 
the overall “fuzziness” in U via the following results proven in [5]: 

l/c <F(U) < I Q UEP,,, (264 

l/c = F(O) 0 r? = [l/c], P6b) 

1 = F(U) 0 U E P,, is hard. (26~) 

If we denote by d(U, I’) = jj U - 1’11 the distance between 7,’ and I- in I;,, , 
it is easy to check that d(U, 0) = (n(c - I)/c)~/’ Q U E PCo; consequently, the 
matrix IT is the geometric centroid of Pfe . Loosely speaking, (7 is the fuzziest 
classification of the vectors in -Y allowed in Pfe , whereas U’s E P,,, are the 
crispest (hardest). 

Now suppose Vi and Uj are any pair of hard c-partitons of S. We shall write 
C-Z H LTJ to indicate that Ui and Uj are different classification states for S that 
can be realized from each other by a finite number nZj of transitions (or reclassi- 
fications) between stages i and i. For example, if 

C=llooo 
I [ 00111 1 and (27) 
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then nij = 2 for Vi tt U, . It is quite useful for our later work to note that ni3 
can be calculated readily as 

nij = n - tr(UiUjt). (28) 

To see this, consider number 

(29) 

Since (z& and (u?)~~ are respectively the membership of xt in the R-th cluster 
of U, and Vi, each term in the sum at (29) is 1 iff xt is not reclassified in the 
transition Ui t) Uj . Thus Nzj is the total number of individuals not reclassified, 
and hence nCj = 71 - Nij at (28) is the number which are reclassified, and 

(30) 

is the faction or percent of individuals reclassified during Vi ts Uj . For instance, 
we have for the matrices in (27) ni, = 2, N,, = 3, and fii = $ = 40, i.e., 
40% of the data is reclassified. 

The following theorem exhibits the relationship between the partition coeffi- 
cient F(U) and the amount of reclassification done in the terms of any convex 
decomposition of U: 

THEOREM 4. Let U E Pfe , F(U) as in (25), fig as in (29), and suppose that 
U = Cizl c~U’,~ is any convex decomposition of U. Then 

F(U) = 1 - f ‘2 c&c, . 
j=,+1 i=l 

Proof. 

= (l/n) (f i Ci tr(U#Ut) Cj) 
j=l a=1 

(30) 
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Observing that N,j = Nii V i =,= j, and that N?, = nF(iY/‘,) = n v i, we have 

F(V = t1 c,W,,!n) c, + 2 (,$+, g @din) CT) 

=- $, c,* i- 2 ( ,tl z; 4(n - (n - NJ/n) ~9) 

the last equality following because the c, are convex coefficients, so they sum 
to 1. QED. 

Equation (30) shows that F(L;) = 1 iff fi, =-: 0 V i +j iff n = LV,, V i + j iff 
no point is ever reclassified in any convex decomposition of 2 _ ifl’ C’ E I’,.,, is 
hard and is its own unique convex decomposition, p = c1 = 1. An equivalent 
way to state Theorem 4 as as follows; we define the p .,: p transition matri.\ 

Matrix 1L’ is symmetric and positive-definite for li E I’,., , and may thus be used to 
induce the weighted inner product <:c, cl,, =: ,/ c 1’ cfiVc on RI’. L-sing N 
this notation, we have from the proof of Theorem 4 the 

C‘OROLIARY. Let UE Pfr, and suppose C.: = x?Cl c,L, =-- x:=, c,: l-; are tzco 
convex decompositions of U. Let N and N’ be their respectice tranaition matrices 
computed zYa (31), and let c and c’ be their eectcrs of conriex coeficients in [WI’ and 
R”. Then 

/ c ‘1x =z- / c’ !&., . (32) 

Proof. Expansion of CT in any decomposition leads to, for example, I’( 7 ‘) : 
1:’ 1 xrml (c,K,,c,/n) = ctNc = ‘1 c 1 k . Since F(I’) is fixed, (32) follows. 

cJ.l:.D. 

The implication of (32) is this; all convex decompositions of CT are equivalent 
in the sense that their vectors of convex coefficients have equal lengths when 
normalized by the amount of reclassification required by their respective 
sequences of hard transitions. Since the ij-th entry of K is the fraction of indivi- 
duals not reclassified in the transition U, f-) 17, , the value F( Z;) = c’)Vc masi- 
mizes (for different partitions U) when the overall amount of reclassification is 
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minimized: this is a new justification for the clustering strategy of maximizing F 
outlined in [5]. Evidently the quadratic form &NC increases as the number of 
“stable” points in the data does, maximizing when no reclassification is necessary. 

Assuming without loss that Ui and Uj are distinct, it will be seen that N&r is 
always less than 1 for i # j. We emphasize here that this is the number or 
fraction of vectors not reclassified in the single-step transition lJ,++ Uj , even 
though r/, and U, may be actually realized via a multi-step transition which 
would accumulate a different fraction of fixed addresses. For example, the 
transition shown in (27) has Nii/n = 315 = .6, so 60% of the data is stable 
during the transition. We could, however, realize U, from Vi in the two-step 
transition 

11000 
vi= 0 0 1 1 [ 1 tfulc= I [ 

00111 
10 0 oHu’= I [ 

1 0 0 1 0 
1 1 01101’ 

(33) 
In (33) we have N&z = O/5 = JO; N&z = 2/5 = 40; and N& = .60 as 
above. Thus Ui t) Ui ++ Uk but Nij # Nzk + Nkj . 

To solidify these ideas we decompose the matrix at (34) with both the MM 
and R algorithms: 

U = 

[ 

.39 .60 .35 .I7 .92 

.I7 .I4 .37 .78 .05 1 f RR,. (34) 
A4 .26 .28 .05 .03 

(i) AIM-decomposition of (34). The initial MM path is vi = (*ai , *is , *ss , 
*s4 , *r5), with minimum maximum membership cr = us3 = .37, 

c,Ul=.37[q i ; 8 j; Rl=[z fi If 181 ii;]. 

From v2 = (*11 , *32 , *13 , *24 , * 15 ) we infer that c, = (~r)~~ = .26, so 

c2U2 ==.26 [A 8 i i 81; R,= [;+; ; 5 ig :i] 

V, = (*21, *12, *33 , *14, *J =S ~3 = (~2)~~ = (r2)14 = .17, from which 

c3U3 = .17 (a i 8 i j; R3 = [ii ; f \; ii;] 

v, = (+rr , *22 , *33 , *24 , *is) 3 c, = (r3)33 = .l 1, leading to 

c4U4=.11 E i 8 i b]; R4=[; i; i i; 3 



At step 6 we encounter with MM-decomposition the first non-unique path of 
minimum maximum menbership in R, because of the tie in its first column. 
Choosing the upper path leads to vg = (*11, *2s , +r8 , +z4 , c3J and the choice 
c6 = (Y~)~~ = .02, whence 

c6u6=.02~ H g 8 81; R,= 

[ 

.oo .Ol .02 .OO .Ol 

.oo .Ol .OO .02 .oo . 

.02 40 .oo .oo .Ol i 

In the seventh step there are four MM paths in R6. For the choice 
v7 = (*31, *12, * 13 , *24 ? *d c7 = ty6)12 = ('Bh gives 

c,U,=.Ol E i i 8 j; R,= [g :f i! -f ii] 

and from R, we have at the last stage of MM-decomposition 

509 CONVEX DECOMPOSITIONS 

v5 = (*31, *12, *13, *34 9 *2J 3 cr, = (Y~)~ = (r4)s5 = .05, yielding 

%,j=.o5~ b g 8 i!]; R,= [i ;:; ii -I ii]. 

with R, = 0, the zero matrix. 

(ii) R-Decomposition of (34). This decomposition begins with the con- 
struction of the ranking and cumulative sum matrices p(U) and o(U). Repeating 
(34) for convenience, we have 

.39 .60 .35 .17 .92 
U = 

I 

.17 .14 .37 .78 .05 ; 
A4 .26 .28 .05 .03 I 

p(U)= [T ; i ; i]; 

.60 .72 .95 .92 
.37 .78 .97 . 

A4 .86 1 1 1 I 
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From u(U) we array the thresholds (ak> and from them derive the successive 
differences, say {d,}: 

a, = 
a1 = 
a2 = 
a, = 
a, = 
a5 = 
a6 = 
a, = 
as = 
a, = 

alo = 
all - 

.oo 

.37 > dl = .37 

.44 >d, = .07 
e60 > d, = .I6 
.72 > d4 = .12 
.78 > d5 = .06 
.83 > d, = .05 
.86 > d7 = .03 
.92 > ds = .06 
,95 > dB = .03 
.97 > d,, = .02 
1 > d,, = .03. 

Using C d,W, for the form of the R-decomposition, the initial term dlW, 
is exactly the same as clU, in the MM-decomposition above, with identical 
residual. Upgrading the threshold from .OO, all data points are stable until 
t > .37, at which time xa must be transferred from class 2 to class 1 (from u(U) 
we see that x, will now remain in class 1 until t > .72, at which time it will 
transfer from class 1 to class 3). Reclassifying x3 results in the second term 

The threshold is now increased without change in classification until it crosses 
the next cumulative sum, t > 4% At this stage x1 becomes unstable in class 3 
and must be transferred to class 1, where it will remain until t > .83; 

Since the ordering of the {ak} was strict, we expect a unique 11 term R-decom- 
position of U. To shorten this example we record the unique sequence of 
reclassifications as address transfers in the matrix p(U): 
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The sequence of transitions recorded in p(U) indicates the stability of each of 
the Wk’s to cumulative membership thresholding. The sequence suggests that 
x3 is the least stable or most undistinctive data point, since it is transferred twice 
in the early stages of decomposition, whereas xg holds its initial classification the 
longest, indicating its relative certainty of membership distribution in the given 
fuzzy partition. 

The partition coefficient F(U) f or this U is F(U) = ctNc = dtN’d == 
tr(UUf)/n = .53, where 

ct = (.37, .26, .17, .ll, .05, .02, .Ol, .Ol) 

dt = (.37, .07, .16, .12, .06, .05, .03, 06, -03, .02, .03) 

and N, W are the 8 >c 8 and 11 x 11 transition matrices calculated via (3 1) 
for the MM and R decompositions respectively. Since c = 3 we know that 
.33 6 F(U) < 1: accordingly, 53 is a relatively low partition coefficient, 
indicating a fuzzy partition containing quite a bit of fuzzy uncertainty. This is 
manifested in the convex decompositions by coefficients which have no strongly 
dominant term. Thus c,Ur = d,Wr = .37U,,,, indicates a relatively low 
minimum maximum membership bonding for the relation induced on the 

data by LTTi,,,; indeed, for c = 3 the weakest possible dominant term has for its 
coefficient .33, so that one’s confidence (of .37) in taking CT,,I,l as a first approsi- 
mation to hard clusters in S should be slight. 

1%. SUMMARY 

Several important facts about convex decompositions of fuzzy c-partitions of 
-Y have been enumerated. In particular, the dimension of fuzzy c-partition space 
is n(c - 1). Two algorithms for decomposition have been analyzed and exempli- 
fied. Both of these algorithms are rather tedious to work with by hand, but are 
quite readily programmed for large scale problems involving real data sets. The 
relationship between convex decomposition and the partition coefficient provides 
additional justification for a previously advocated fuzzy clustering strategy. 
The authors plan to devote a forthcoming paper to the connection between 
fuzzy partition spaces and fuzzy similarity relation spaces, in which analogs of 
the convex decompositions described above will hopefully lead to a new method 
for clustering with fuzzy graphs. 
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