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In this paper some connections between fuzzy partitions and similarity relations are explored. A 
new definition of transitivity for fuzzy relations yields a relation-theoretic characlerization of the class 
of all psuedo-metrics on a fixed (finite) data set into the closed unit interval. This notion of transitivity 
also links the triangle inequality to convex decompositions of fuzzy similarity relations in a manner 
which may generate new techniques for fuzzy clustering. Finally, we show that every fuzzy c-partition 
of a finite data set induces a psuedo-metric of the type described above on the data. 
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1. Introduction 

The extant theory and applications of fuzz2y relations are contained in the papers of 
Zadeh [1]; Tamura et al. [2]; Kandel and Yelowitz [3]; and Dunn [4]. In particular, 
the transitive closure of [0, 1], reflexive, symmetric fuzzy relations is discussed as a basis 
for constructing hierarchical clusters in finite data sets. Dunn showed in [4] that this 
methodology yielded essentially the same results as the well-known graph-theoretic 
technique called the single linkage method (c.f. Duda and Hart [5]). The basis for this 
observation was that the notion of transitivity used in [1-3] for fuzzy relations is 
equivalent to the ultra-metric inequality. One of our main goals in the present work ~s 
to enlarge this theory by redefining fuzzy transitivity so that it becomes equivalent to 
the triangle inequality. The class of fuzzy similarity relations characterized in this way 
appears to be an important ~pace for applications in clustering. 

In Section 2 we review hard (i.e., non-fuzzy) partitions and equivalence relations for 
finite sets. Section 3 extends these ideas to fuzzy partitions and similarity relations, and 
introduces Max-A transitivity. In Section 4 we discuss convex decompositions of fuzzy 
similarity relations. Section 5 presents an application of the preceding ideas, defini~g 
a new method for clustering via convex decomposition of similarity relation matrices. 
In Section 6 the work of Bezdek and Harris [6] is continued by connecting fuzzy 
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partitions with fuzzy similarity relations. We show that every fuzzy c-partition of a 
finite data set induces a pseudo-metric on the data. in this way individual fuzzy 
relationships can be obtained from fuzzy class memberships. 

2. Hard partitions and relations 

Let X ={x~, x 2 , . . . x , }  be a finite data set. If, for a positive integer c, 2 < c < n ,  it is 
known (or assumed) that X contains representatives from c subclasses, then cluster 
analysis with respect to X is the problem of identifying the subclass labels, i.e., of 
partitioning X into c subsets (clusters). 

A hard c-partition of X has three equivalent characterizations" sets, functions; and 
matrices. In what follows the description most convenient for us is in terms of matrices. 
Towards this end let V~. be the usual vector space of real c x n matrices over V. Let u;k 
be the ik 'h element of U e Vc., and define 

(1) 

Here Uik is the membership of xk in class i; ~c is exactly non-degenerate h . r d  c-partition 
space for X. and the superset ~co ~ :~c of matrices obtained by relaxing the last condition 
in (1) to ~ =  ~ Uik >= 0 V i is the corresponding degenerate space. 

To each U ~  there corresponds a unique hard equivalence relation in the 
Cartesian product X x X. Loosely speaking, we have, given U ~ ~¢, the relation matrix 
R = [rij] in V,,. defined by: 

1; 
rij= 0; 

Uki = Ukj = 1 3k,~ 
otherwise. f 

Since R is an equivalence relation, it satisfies three reqmrements" 

i ' ii  = 1 Vi, 

ri~=rji V i ~ j ,  

I rik=|t=~ri,= 1 
r~.j = 1 

Vi, j. 

(refle;dvity) (2a) 

(symmetry) (2b) 

(transitivity) (2c) 

Let S and R be two equivalence relations. The composition of R followed by S will be 
de~loted as S o R. In particular, o denotes generalized matrix multiplication when S and 
R are relation matrices. Thus if P = S o R ~ V,,, ,~hen 

Pis -  [] (sil*rt~), (3) 
/ = 1  
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where (VI, , )  is the pair of operations defining o. In the sequel our interest lies with four 
matrix products:  

~ = ( ~ .  ®)--, Sum-Product,  
. ,  

,~ = ( ~ .  ^ )~  Sum-Min, 

o = (  v . . ) ~  Max-Product,  

o = ( v . ^ )~  Max-Min. 

(4a) 

(4b) 

(4c) 

(4d) 

Let I,, denote the n x n identity matrix, and define the ordering A < B,¢~aij <= bi jVi  , j', 
A, Be V,.. With these conventions and (3), (4), conditions (2) may be restated compactly 
as 

I, < R, lreflexivity) (2a)' 

R = R -r, Isymmetry) 12b) 

R = R (  v .  ®)R = R (  v . ^ )R--R 2. (transitivity) (2c)' 

The set of all hard equivalence relations on n data points we denote by 

:~,,={ReV,,,,rije{O, 1}Vi, j; I,,<R; R=R~=R(I / .  ^ )Rj.. 15) 

Another characterization (not used below) i,; in terms ofgraphs. We mention that the 
work of Rosenfeld [-7] and Yeh and Bang [8] on fuzzy graphs might be substantially 
enriched by adopting for its basis the fuzzy relation structure described below. 

3. Fuzzy relations and partitions 

Physical and mathematical objections to .#c( or :a,) as a basis for pattern recognition 
models are discussed at length in [9]. For the present work our interest centers on tl:e 
fact that each U e~c requires every XkeX to belong unequivocally to precisely one 
partitioning subset of U; and the relation R e :~. induced on X × X bv U rend,:rs all .xk's 
in each equivalence class indistinguishable (from one another) to data in other classes, 
that is, totally related to one another and completely unrelated to members of other 
classes. Transitivity (2c) is particularly difficult to justify in many applications (c.f. 
Crowson [10]) and turns out to be the most subtle of properties (2) to generalize. 

Zadeh in [11] originated the idea of allowing sets to have "'fuzzy" boundaries. 
Following [11], we call a membership function u i : X ~ [ 0 , 1 ]  a fuzzy subset of 
X : Ui(Xk) -- Uik is the grade of membership of Xk in ui. For example, u 4(8.98 ) =0.96 would 
imply for r=8 .98  a strong agreement with the properties characterizing the fuzzy 
subset A = { r e R I r is "slightly less" than 9}. Fuzzy imbeddings for ;~,. and M, can be 
constructed in a variety of ways. The most widely used imbedding for .~, is non- 
degenerate fuzzy c-partition space: 

JJ°fc-- UeVcnlUike[O, 1]Vi, k; l / ik= lVk;  2 Uik>OVi " 16) 
i--.I k=l 
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At least three algorithms for generating fuzzy c-partitions of X are now known: those 
of Ruspini [12]; Woodbury [13]; and the fuzzy ISODATA algorithm discussed in [9]. 
More recently, the nature of the embeddings ~ ~_ ~ o  ~ ~y~ have been explored in [6! 
to exploit the fact that ~I~ is the convex hull of ~ o  :~i¢=conv(~¢o). 

A matrix U e ~I~ of membership functions for points in X conveys the relationship 
each Xk bears to the c fuzzy subclasses partitioning X, but says nothing about 
relationships between individuals. To realize information of this kind we consider fuzzy 
relations inX xX. A fuzzy relation inX xX is a membership functit~r~ p:X x X  ~[0 ,  I] 
whose values p(x~,x~)denote the strength of relationship Vi and j between xi and xj. In a 
manner entirely analogous to the hard case above, p can be r,,presented by an n x n 
relation matrix R = [ r~j] = [p ( x:, x~)]. T o generalize (2a) and (2b) we call a fuzzy relation 
R 

reflexivec~rii = 1Vi; and symmetric~,rij = rj~ Vi 4= j. (7a)--(7b) 

Again compactly expressed as I . <  R and R = R  T respectively. 
The extensions given in (7a) and (7b) are quite natural. Extending transitivity to 

fuzzy relations requires more thought. In [ 1 ] Zadeh proposed the following definition" 
a flJzzy relation R is 

i1 

max - ,transitive,c~,ru> V (riz*r~j) Vi, j (7c) 
1 = !  

or ,equivalently, if and only if R > R( v . . ) R  - R 2, where • could be either min ( v ) or 
oidinary product (e). Following Zadeh we call 

:~ .={Re  v.,.lr,je [0, l]Vi, j; I,,<R" R = R  T >R(  v . . ) R }  (8) 

sets of fuzzy similarity relations in X ×X. Since ab<a A b for a, be[0 ,  1], max-min 
transitivity implies max-prod transitivity, i.e., M^ c ~8.. 

There is a more general operation • with natural physical meaning which extends M, 
to a maximal set of fuzzy similarity relations. Let us define a fuzzy similarity relation R 
to be 

n 

max-A transitivecz, ro> V ((rit+ r u -  1 ) v OIVi, j. 
/ = l  

(9) 

T~> see that max-A transitivity is implied by max-prod transitivity, note that (a + b 
- ~ ) v 0 < a b  for a, be[0 ,1] ,  so 

n ii 

rij :-~ V (ril'rlj)~- V ( r u + r t j - 1 ) v O "  
! = 1  / = 1  

I~ fact, if we define on [0, 1)× [0, 1] the operations 

a A b - ( a + b -  1) vO, (lOa) 
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a + b  
a [ " l b = -  2---, (10b) 

a ~ b = a  + b - a b ,  (10c) 

then the inequalities 

( a +  b -  1 ) v O < a b < a  A b < . . +  b < a  b < a +  b - a b <  1 (11) 
- 2 - - - 

result in the following hierarchy of similarity relation spaces upon substitution of the 
appropriate operation for • in (8). 

_ ~  ~ = : ~  = ~ , c _ ~ z ~  " ~ . = ~ - ~ ' ~ o -  ~ -  (12) 

The type of transitivity employed will presumably be dictated by the application at 
hand. We contend that max-A transitivity is the most interesting type on both physical 
and mathematical grounds. To see how restrictive max-min transitivity is, for example, 
note that any m numbers al <~a 2 <--...<a,, can satisfy the requirement a i>as  A ak, Vi, j, 
k distinct, if and only if al =a2 = . . .  =a, ,_ 1 <-a,,, because al > (a,,_ l A am). Indeed, for 
the matrix 

I I 0.8 

R(2)= 0.8 1 

0.7 ). 

0.7] 
), with £e[0 ,  1], 

1 

(13) 

it is easy to check that R( i . ) e :#~¢¢ ,2=0 .7 ;  whereas R(2)~.# Lv2e[0.5,  0.9]. This 
illustrates how sparse the relations M^ are among the relations M=. 

A physical interpretation of max-A transitivity can be made using (13) and a 
graphical representation of the relationships involved. Consider first R(0.7)with rl 2 
=r21 = 0 . 8 ;  r13- "" 1=0.7; and r 2 3 = r 3 2 = 0 . 7 .  Since R{2) is max-min transitive iff 2 
=0.7, only one pos' lbility is allowed for the mutual booding provided by xl in linking 
x2 to x3" namc!~, that all of the relatives o f x  3 responsible for the relationships r31 = 0.7 
are shared through with x2 (Fig. 1). 

In other words, max-min transitivity calls for the optimal "alignment" of mutual 
relatives. An alternative way to think of this follows by answering the question" 

(If x R  y=0.7, what should y R z = ( ? )  to imply that x R z > 0 . 7 ? )  

It is our contention that (?) should be 1 : x should be related to z by at least x R yc;,y and 
z are indistinguishable to outside observers,~y R z = 1. For y R z < 1, y and z are not 
~ally equivalent to each other, and the mathematical restrictiveness manifested by max- 
min transitivity amounts to assuming the optimal alignment displayed in Fig. 1. 

On the other hand, max-A transitivity for the matrix R(2) allows for the "worst" 
alignment, as illustrated in Fig. 2. 

The max-z~ alignment in Fig. 2 assumes that x2 and x 3 must be coupled by only 50 of 
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Fig. i .  G r a p h i c a l  i l lus t ra t i cn  o f  m a x -  ^ transitivi~: ~, 

0.0 0.5 1.10 

r31=.7 ~ ' ~ , ~  ; , 
I I 
i I 
I I 

k\\\\\ \\xl ,5 ¢ , . X =  r32 ~ . 9  

I ! 
! ! 

I I 

r 1 2 = . 8  t : , , I _ 1 
I 

I.o o,~ o.o 

Fig. 2. G r a p h i c a l  i l lus t ra t ion  o f  ma :~ -A  transi t ivi ty .  

each 100 relatives shared with xt, the most unoptimistic alignment of mutual bonds is 
used, instead of all 70 as in Fig. 1. 

There is an interesting mathematical property of R z~ which also argues for its use. 
Zadeh demonstrated in [1] that max-min transitivity was equivalent to the ultra- 
metric inequality for the function d(xi, x ~ ) = l - r  u, where R = [ r u ] e g t ^ .  Since 
9t^ c_~/, and the ultra-metric inequality implies the triangle inequality, one might 
suspect that max-_A~ transitivity is equivalent to the triangle inequality. This is precisely 
the case: 

Theorem 3.1. 

) 
The function :X ×X---,[0, 1] defined~ 

R e~za.,~{byd(xi, x i)= d 1 - r~ is a pseudo-metric. ) 
(14) 

Proof. Let R=[ro]=[1-du]  , where we put du-d(xi ,  xj)Vi, j 
(i) roe[O, 1]Vi, j~dije[O, 1]Vi, j. 
(ii) Suppose i=j:ru= l¢~,dii=O; thus l,<R=,du=OVi, and conversely, dii 

=OVi=*,I,<- R. 
Note, however, that r o = 1 with i --/= j ~ d  o =0 with x~ =/= x~, so d is a pseudo-metric at best. 

(iii) Symmetry for d f611ows from R = RT; symmetry for R from du=dji Vi,~. 
(iv) Finally, we show that max-A transitivity is equivalent to the triangle inequality: 
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O v ( r o + r j k - 1 ) < _ r i k V d i s t i n c t i ,  j , k  ¢~ 

rij + rjk ~-- 1 <_ 1 + rik <:~ 

(1 - -du)+ (1 --djk)~-- 1 + (1 --dig ) ¢~ 

-- (dij + djk) < = --dik <::, 

dr, < d 0 + djk. I-] 

i17  

Theorem 3.1 shows that :~zx is the set of fuzzy similarity relations which induce 
pseudo-metrics on X x X in exactly the same way that .'~ ̂  induces pseudo ultra-metrics 
on X ~ X, and substantiates our supposition that it is the maximal set in the hierarchy 
(12). 

4. Convex  decomposi t ions  o f  similarity relations 

Let conv(~,,) denote the convex hull of hard equivalence relations. Our goal in this 
section is to place conv(;~n) in hierarchy (12), and exhibit a relationship between convex 
decomposition and max-A transitivity. We begin with- 

Theorem 4.1. For  n = 3  we have 

c o n v ( : ~ 3 )  = ; ~  A . (15) 

Proof. R econv(,83)¢~3 scalars {Cl, c2, C3, C4, c s ) c [ 0 ,  1] so that 

[' ["i] ["!] [,o!] R = 1 Y3 = c i  1 + c  2 1 + c 3  1 + 

1 

[, 
+c4 1 +c5 1 (16) 

with ~kS= lC~,--1. Here and in the sequel we omit the lower triangular portion of 
symmetric relation matrices. We use Yt, Y2, Y3 for r~2, rl3, and rz3 in R to shorten the 
notation. 

From (2a) and (2b) it follows that I < R and R = RT; further, every entry of F. is a 
partial sum of Ck'S, SO 0 <  ri~< 1 Vi, j. It remains to be seen that R is max-A transitive. 
We are to show that 1 + yi_> yj + Yk V distinct i, j, k. Towards this end we have from (16) 
the equations 

Yl "-CI +C2, 117a) 

Y2 "-'¢1 "+¢3, [17b) 

y 3 = c l  +c4. il7c) 
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Adding thcse and using ~ = ,  Ck = 1 yields 

Yl +Y2 +Y3 =2c,  + 1 - c s .  (18) 

Using (17) and (18), the convex coefficients c t, c 2, c 3, and c,  can be written in terms of c5 
and the entries of R as 

c, = l / 2 ( y ,  + Y2 W Y3-t-cs - 1 ) ,  (19a) 

c2=1/2(1 + yt --(y2 + y3 +cs) ) ,  (19b) 

c 3 = l / 2 ( l ' + Y 2 - - ( y t  +Y3 +C5)), (19c) 

c4 = 1/2(1 + Y3-- (Y, + Y2 + Cs))" (19d) 

Now consider, for example, (19b)" since 0_~¢2 ~ 1 it is necessary that 1 + y, -(Y2 + Y3 
+ c5 ) >_- 0, or equivalently that 1 + yl - (Y2 + Y3 ) >- cs- But 0 __< c5 _-< 1, so 1 + y, - (Y2 + Y3 ) 
>-c~>O=*.l+y,>-_(y2+y3). Similar arguments with (19c)and (19d)establish th 
required inequalities, so R is max-A transitive, and hence conv(~3)c_~/x. 

Conversely, suppose R e ~A. We must prove that R can be decomposed as in (16). 
From r~je[0, 1] V i, k and I.__< R it follows that ~ = ,  Ck = 1 with Cke[0, 1] V k. If we 
can choose the Ck'S tO satisfy these constraints and equations (19), then R = R  r 
guarantees that R = ~ =  t CkRk with RkeCOnV(~3) as exhibited at (16). 

For c2, c3, and ca to be non-negative it is necessary from (19b), (19c), and (19d) that c5 
< 1 +Yi--(Yg+Yk): for c, to be non-negative, that c5_>_ 1 - 0 ' ,  +Y2 +Y3). Thus 

1 - ( y ,  + y 2 + Y 3 ) <- c s <= (1 + y , ) -- (y j + Yk ) V i, j, k distinct. (20) 

But Re&a=, , (1 + y i ) - ( y g + y k ) > O V i ,  j, k distinct, so we can always choose convex 
coeIticients as follows" assuming without loss that Y3 =Yt A Y2 ̂  Y3, we choose 

171 = Y3 (largest possible c, ) (21 a) 

C2 =Yl--Y3 (least possible c2) (21b) 

C3 =y2 -- Y3 (least possible c3) (21c) 

c,  = 0  (least possible c4) (21d) 

c 5 = ( 1  + Y 3 ) -  (Yl +Y2) (largest possible c5) (21e) 

For this choice of Ck'S w e  have a convex decomposition of R, so 

~ A _  conv(~,3). I-1 
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Before proceeding to the general case, we elaborate the possibilities for all convex 
decompositions with n = 3. First, the coefficients (21) can always be chosen, yieloit:g the 
largest c~ and c5 with least c2, c3, c4. There are several cases for coel;~cients, depending 
on the relationship of (yt + Y2 + Y3 )to 1" again assuming y3 = Y~ ^ Y2 ^ Y3, we find using 
the constraints 0__<ci__< 1Vi, that 

Case I. If Yl +Y2+Y3 >-1, then c s = 0  and ¢1 = l/2((y~ +yx+y3)-- 1) are minimum, 
while c2, c3, ca from equations (21) become largest. 

Case 2. If y l + Y 2 + y 3 < l ,  then c s = l - ( y  -}-y2+Y3) and c1=0 are minimum, 
whereas c2 =y~, ca =Y2, C,t. =Y3 are again largest. 

Case 3. If 1 +y3=y~ +Y2, C5=0, and the decompositiofi (16) is unique. 

Case 4. If y3"--0, Yl +Y2 <-1, then c 5 = 1 - ( y l  +Y2), and the decomposition (16) is 
unique. 

For n > 3 we find that max-A transitivity is necessary but not sufficient for R to be in 
conv(~n). If ~ indicates proper subset, we have 

Theorem 4.2. For n > 3, 

conv(~.) c ~'A. 

Proof• Let Reconv(&n), say R = ~ ' = I  CkRk with ~L'=I Ck = 1; O~Ck~ 1 ¥k, and each 
Rk ~ ~ .  Let Rok be any 3 x 3 principal submatrix of R, i.e., 

1 
[ 1  Yi Y~] 

R = 1 = R~jk • 

_ 1 - 

The decomposition of R also effects a convex decomposition of Rok ~ cony (.~3) = ~ a  by 
Theorem 4.1. Thus l+y~>yj+ykVi ,  j, k distinct and for every principal (3×3) 
submatrix in R. Therefore R ~ ~ Vn. 

To see that (22) is proper for n>  3, we note that the matrix 

1 0.3 0.6 0 

R(fl)= 1 0.7 0 . 
1 , 

1 

is in conv(~4),**,fl =0, but lies in :~zx for all fl ~ [0, 0.30]. I-I 

To place conv(~n) in the hierarchy (12), we note that Zadeh exhibits in [ 1 ] a nested, 
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non-convex decomposition of every R e & ^ by hard relations in ~ , ,  viz., R = UkdkRk, 
with O<dk <= 1, R1 <-R2 <-...Vk. Defining Ok+ ~ =dk+ 1 --dk, k - 0 ,  1, 2, . . .  and replacing 
~k by ~k yields convex decomposition R = Y',k CkRR, hence we have 

Theorem 4.3. For n> 2 

^ ~ conv(~.) .  (23) 

To see that containment in (23) is proper for n >  2, recall that R(2) at (13) lies in 
^ ¢~,2 =0.7, whereas R(;t)e ,~ A for 2 ~ [0.5, 0.9], and by Theorem 4.1 ~ A = c o n v ( ~ 3 ) .  

Accordingly, the placement of conv(~.)  in (12) is 

.~ ^ = conv(~.)  = ~zx Vn > 3. (24) 

The position of conv(~.)  with respect to ~ o ~ n o t  yet known--seems relatively 
unimportant,  since the sets exhibited in (24) are the ones most useful in the applications. 

Theorems 3.1, 4.1, and 4.3 combine to exhibit a rather interesting inter-relationship 
between the triangle inequality, max-A transitivity, and convexity. Before proceeding 
we summarize the relationships between :~., ~ ^, (conv(~.), and ~z~): 

If n = 1 : .~,, = .~  ^ = cor, v(M.)=.,$ ~, 
If n = 2 : ~ .  ~ ~ ^ = c o n v ( ~ . ) =  ~ ~, 
If n = 3  :~,, ~ ^ ~conv(.~.)  = ~z~, 
I f n > 3 : ~ . ~ ^  = c o n v ( ~ . )  = ~ a .  

In each case, the proper imbeddings are nowhere dense in the indicated superset, 
illustrating how sparse each set of similarity relations is in the next larger set lbr n > 3. 

5. Clustering by convex decomposition 

At present the only clustering procedure based on fuzzy relations appears to be the 
one described in I-1-4]. A concise summary of this method follows- beginning with a 
reflexive, syrr metric fuzzy relation matrix R, its transitive closure I~ is obtained by any 
of three algorithms- ( v .  ^ ) composition iteration, R < R2 < R3.. .  < R~ =/~ 
=Rk~:~^ V k > q < n - I ,  Zadeh [I] ,  or Tamura  et al. [2]; a column-row scanning 
algorithm, Kandel and Yelowitz [3];  or Prim's minimal spanning tree algorithm, Dunn 
[4]. 

Once/~ is obtained, its entries are used to define a nested sequence of hard relations 
Ru~ ?~, by thresholding at levels in-between successive values of ~u- Thus one might 
have from the entry fu the hard ~ e!ation xpRijxtt.c:~fpq~ ru Vp, q. In this fashion one may 
construct a nested sequence of ; : , rd equivalence relations (therefore hard c-partitions 
ofX ) in X x X, which ultimately yield a partition tree or dendogram. While this method 
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appeared at first to be quite novel, it was shown by Dunn in [4] that because max-min 
transitivity is equivalent to the ultra-metric inequality, the resultant hierarchies of hard 
clusters were in fact a subset of single-linkage hierarchies, from a well known graph- 
theoretic method for hard clustering [5]. Thus, no apparent advantage was gained, and 
further, the density of .~^ in "~Lx is SO slight that hierarchies generated this way are 
severely limited. 

As an alternative, if R e conv(.~,), we can use its convex decomposition for clustering 
as follows: suppose R = ~ ' =  1 CkRk. Each R k ~ "~n is isomorphic to a hard c-partition of 
X, say Uk ~ ~ .  Note that c, tre number of clusters in X, is in general a function of k, so 
there will be no hope that ~ ' =  ~ Ck Uk is well-defined, although when it is, the resultant U 
lies in ~I¢" Thus from R = ~ ' =  ~ CkRk there follows the sequence 

(Ck, U k ) l U k ~ c V l ~ k ~ p ;  ~ Ck--I . 
k = l  

Since the decomposition ~-'CkR k exhibits the "percentage" of each R k needed to build up 
fuzzy relation R, we interpret Ck as an indicator of the relative merit of the associated Uk 
as a c-partitioning of X. Note that this also provides a method for choosing c, the 
number ofclusters most likely to exhibit substructure in X; and finally, observe that the 
partitions {Uk} generated this way are not nested hierarchically. We exemplify both 
methods using the matrix R(fl) appearing above with fl=O. 

E x a m p l e .  

I 1 0.3 0.6 0 1  
1 0.7 0 

R = 1 0 (25) 

1 

Composing R with itself using ~., = ( v . ^ ), we find 

I 1 0.6 0.6 0 1  
Rz= 1 0.7 0 . 

1 0 ' 

1 

I °6 R3= 0i7 = R 2 = ~  

Hence the transitive closure of R is/~ = R 2 - -  R 3 .... A typical hierarchy of hard clusters 
derived from/~ using the ~v'~ as thresholds is 

x, Ro.sgXj¢~,6~>0.59={ 1,2,3} w {4} ) 

x, Ro.65x;~,6~>0.65=~{1} w {2,3} w {4} 

x2Ro.v,Xj~ei~>0.71~{ 1} w {2} w {3} u {41 

(26) 
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In (26) we represent hard partition 

['ooo 
more compactly, for example, as { 1, 2, 3} w {4}, etc. Another way to represent (26) is by 
a dendogram, as in Fig. 3 below. 

x I x 2 x 3 

T r, r 
x 4 

"°1 0.7} 
0 , 6  

0 , 0  t 

C=4 

C=3 

c=2 

Fig. 3. Dendogram for clustering by transitive closure. 

If we define v(c), c--2, 3, 4, as the jump in relation strength between levels of clusters, we 
find that v(2)=0.6; v(3 )=0.10; and v(4) =0.30. One commonly assumes that the order 
of the values {v(c)} indicates the relative attractiveness of choices for c: in the present 
instance we infer from (26) that single-linkage hierarchies will manifest a strong 
preference for c = 2, { 1, 2, 3 } w {4] ; and for a second choice, c = 4, { I } ,- {2} w { 3 } w {4 }. 
Returning to (25), we agree that {x¢} should always be isolated from : ~3 x2, :3}, but 
whether total segregation (c = 4) is preferable to 3-partitions of X on the Le.sis of the 
relationships shown in R is questionable. 

Because column 4 of R is special, R in (25) has the unique convex de~:omposition 

1 1 1 0 1 0 0 0 1 0 ~ 0 

R=0.3 1 1 1 1 1 0 0 (27) 
1 + 0 . 4  1 + 0 . 3  1 0 " 

1 1 

R1 R2 R3 

From (27) we obtain the sequer~ce of clusterings 

( i !  = 0 " 3 ; c = 2 ;  {1 '2 '3}U4 ) 
=0.4; c=3 ;  {1} L.., {2,3} w {4} 

. =0.3; c=3 ;  {1,3}u{2}w{4} . 

(28) 
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System (28) conveys a strikingly different portrait of substructure in X suggested by 
R than (26). From (28) and c2 =0.4 we infer that c =  3; { 1 } w {2, 3} w {4} is the optimal 
clustering ofX; and that c = 2 or 3 with c2 =c3 =0.3 are equally likely as second choices. 
Note that the clusters obtained in this way never admit c=4,  a fact we find more 
consistent with our intuitive understanding of relationships in R. Moreover, the 
closeness of c,, c2, and ca indicates that R is fuzzier than the tree in Fig. 3 might imply. 

A precise characterization ofconv(~n) is needed to make this technique applicable in 
general; Theorem 4.2 shows that max-A transitivity is necessary but not sufficient. 
Furthermore, an efficient algorithm, such as those described for convex decomposition 
of U e # : ,  in !-6] has yet to be found. Nonetheless, our example seems to justify further 
efforts in this direction. 

6. A connection between #fc and ~/x 

As noted above, it is not generally possible to recover a U e ~:c = conv(.~o) from an 
R e conv(.~.). The difficulty lies with degeneracy in ~co. In other words, the diagram in 
Fig. 4 is impossible (conv(~'co) cannot be isomorphic to conv(~.)). 

,¢ 

l ' I 

~n ~ ~ c°nV(~n ) 

Fig. 4. 

Nonetheless, there is a mapping from ~ : ,  ~ ~ zx which provides a very nice method for 
deducing individual relationships in X x X from class membership in U e ,~y~. To begin, 
we define the mapping T" ~-jc~ ~n by 

T(U)=U ro U: (°)=matrix multiplication as in (4). (29) 

First, we prove that To[~,], the image of hard c-partition space in V~,, lies in hard 
equivalence relation space m V..: 

Theorem 6.1. For To(U) defined in (29), we have for every c= 1, 2, 3, . . .n  with n fixed. 

To[#c] c~. .  (30) 

Proof. Let ~ denote the equivalence relation in X x X induced by U e #c. Thus xi 
~ x ~ x i  and x i are in the same subset of U in ~c. We verify (30) for (o)=(~® ^ )" the 
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other products are similar. I f  r i j : = ~ =  1 (Uli A Ulj), we have Vi, j 

ri~= 1¢*. (Uu ^ ul j ) ' -  1 31, 

"**" uu = ulj = 1 31, 

"e~" X i "~ X j . 

Otherwise, rij=O. Thus R = UT(~o ^ )U is equivalence relation ~ .  

Corollary. For f i xed  n ~ N, we have 

n 

Q) r~ [~ , ] - -~n .  (31) 
i = 1  

It is c]ear from (31) that To is not usually invertible. In fact, one may throw any 
number of degenerate images T[;Yio] into the union (31) without altering its size. All 
one cat' assert when passing from ~n back to ~¢o is that there is a largest c, 1 < c < n, so 
that some 

U ~ c ~  R e;~n. 

I~: is interesting that among the class of maps specified in (29) only one carries fuzzy c- 
partitions into similarity relations: 

Theorem 6.2. For o = ( ~ e  ^ ) we have fo r  c=  1, 2,..., n and n f ixed,  

Proof. Let U ~ :~sc, first, we note from (3) that in general 

(32) 

£ 

rij = ['--[ (uzi*utj) Vi, j .  
t = l  

Considering any of the products (4), we find that R = Ur([-I o ,  )U is not reflexive (that 
is, that rii < 1 Vi) unless Vl®. = ~® ,\. To verify that U r (}-'.o ̂  )U e ~zx, we rewrite rij using 
the identity a ^ b =  I / 2 ( a + b - l a - b [ ) "  thus 

¢ 

ri~= ~ (uu A U,j) 
1=1 

g 

--- E { g/2(Uli '~-g4lj--lU|i--Lllj[)} 
1=1 

¢ 

ri~ = 1-- 1/2 2 luu--ud.  
1 = 1  

(33) 
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Now u,,e[0, 1] V/and i, and since ~[_-, u,,= l Vi, E~=, lu,,-,,l~ [0,2]. Thus 

(i) O<rij< 1Vi, j. 
(ii) rii= 1Yi follows directly from (33). 

(iii) rij= rii Vi--/= j because Uu ^ uij=uo A uu Vi, j. 
(iv) Finally we check max-A transitivity: Vi, j, k we have 

Fij "~" rjk --  1 <_ t'ik 

¢ c 

l= l= 
(34) 

To verify (34) it suffices to see that for each term 

(Uli A 1,11j)q- (ldlj A Ulk ) --  (l,~lj ^ U l j ) ~  (Idli ^ ltlk ). ( 3 5 )  

Let a=uu, b=Utk, and c = u  o. Then (35) becomes ( a ^ c ) + ( b A c ) - - ' ( a A b ) < c .  
Equivalently, 

1/2{ (a +c-la -cl)+ (b +c-[b -c l ) - (a  + b - l a - b  l) } <=c 

c+ 1/2{ la-bl - la-c l - lb-c l l  <__c 

1/2{la-bl--la-cl-lb-cl} <=o 

- la -b l  +la-~l +lb-cl >= o ¢~ 

la-cl+lc-bl>=la-bl • {37) 

Since (37) is just the triangle inequality V real a, b, c, it follows that (34) holds, i.e. R is 
max-A-transitive. VI 

Combining Theorems 3.1 and 6.2, we have a way to induce from every fuzzy c- 
partition of X a pseudo-metric on the data: 

U Tz'-4 R = U W ( ~ .  ^ ) U ~ d i j = l - r i j .  (38) 

As an example, suppose we find from the clustering algorithm fuzzy ISODATA [9] 
that an optimal 3-partitioning of X is 

X 1 X2 X3 X4 X5 

[ ] 0.3 0.9 0.85 0.10 0.11 

U =  0.5 0.05 0 0.25 0.78 ~/~f3" 
0.2 0.05 0.15 0.65 0.11 

139) 
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Aside from the information conveyed by (39) about the membership of each x~ in the 3 
fuzzy clusters of X, one may wonder about individual relationships suggested by this 
partitioning. Applying Tz. ̂  to U, we have the fuzzy similarity relation 

m u 

1 0.40 0.45 0.55 0.72 

1 0.90 0.20 0.21 

1 0.25 (:22. 

1 (~44 

1 

^(u)= u (z. ^ ) u = R =  (40) 

From (40) we infer that x2 and x3 are most strongly related, r23 --0.90; that the bond 
between Xz and x4 is weakest, rz4 =0.20. These conclusions seem corroborated by an 
application of intuition to the memberships exhibited in (39). Moreover, we have by 
Theorem 3.1 that 

0.60 0.55 0.45 0.18 

0 0.10 0.80 0.79 

0 0.75 0.78 

0 0.56 

0 

D = I  - R =  (41) 

m 

0 

is a pseudo-metric in X × X which ostensibly provides a natural measure of distance or 
dissimilarity in X ×X induced by fuzz)~ partition (39). 

Finally, note that we find in the proof c f Theorem 6.2 a natural interpretation for the 
relation induced on X × X by Tz~. To discuss it, let Iill, denote the II norm of y e R c, 
viz., l[rll, = ly, I. Then i fU (i) der~otes the i 'h column of U ~ i c ,  we have for r o the 
expression 

,) r,s = 1 - 1/2 [uu- uts = I - 1/2 ([IU " ) -  U(J)[[ x). 
1 

(42) 

Thus the pseudo-metric induced on X x X by Ur(12. A )U, di~= 1 - r o, is just half of the 
l z distance between membership columns of U" 

d(xi, xj)= I/2(][U'i)- U'J)][,). (43) 

Ill (43) it is evident why d is necessarily a pseudo-metric: di~=0c~,U(i)=U(~), but 
clearly this can happen when xi and xj may be distinct. Since dij = 0 , ~ r  u = 1, we have for 
i4: j that xiRxj= l¢~xi and xj have identical membership vectors in the c fuzzy clusters 
of U. This is a very appealing generalization of the physical and mathematical 
meanings of xiRxj= I for R e ~ , .  Conversely, from (42) it follows that t o = 0  for 
i5/:: j 'cc 'I[U ( i ) -  U(J)[[ 1 -" 2,~U ") and U 'j' are disjoint: wherever x i has membership in a 
fuzzy cluster in U, xj cannot, and vice-versa. This also extends the meaning of xiRxj =0  
for R ~ ~ ,  quite naturally. 
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7. Conclusions 

Our imbedding of hard equivalence relations yields a new type of transi, ivity with 
very interesting properties. Max-A transitivity is equivalent to the triangle inequality, 
and is necessary for fuzzy similarity relations admitting a convex decomposition by 
equivalence relations. Furthermore, each similarity relation of this type induces a 
pseudo-metric in X x X. For relations constructed from fuzzy c-partitions of X via 
Ur(~. A )U, this pseudo-metric is half of the It distance between membership vectors 
(for points in the data) for the fuzzy partition used. Examples of applications to cluster 
analysis and cluster validity seem to support our contention that the space of similarity 
relations characterized by max-A transitivity is an important one for applications in 
pattern recognition. A complete characterization of the convex hull of hard equivalence 
relation space together with an implementable decomposition algorithm will provide a 
new clustering method based on fuzzy similarity relations which seems to hold great 
promise: we hope to make this the subject of a future investigation. 
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